Isometric uniqueness of a complementably universal Banach space for Schauder decomposition.

Joanna Garbulińska

Jan Kochanowski University in Kielce/Jagiellonian University in Kraków, Poland
Winter School, Hejnice, January 2013

We present an isometric version of the complementably universal Banach space \mathbb{P} with a Schauder decomposition. The space \mathbb{P} is isomorphic to Pełczyński's space with a universal basis as well as to Kadec's complementably universal space with the bounded approximation property.

In 1969 Pełczyński constructed a complementably universal Banach space with a Schauder basis. Two years later, Kadec constructed a complementably universal Banach space for the class of spaces with the BAP. Just after, Pełczyński showed that every Banach space with BAP is complemented in a space with a basis. Applying Pełczyński' decomposition argument, one immediately concludes that both spaces are isomorphic.

Definition
ε-isometries

- Let X, Y be Banach spaces, $\varepsilon>0 . f: X \rightarrow Y$ is an ε-isometry if

- An isometry $f: X \rightarrow Y$ that is an ε-isometry for every $\varepsilon>0$, i.e. $\|f(x)\|=\|x\| \forall x \in X$.
- A Banach space Y is ε-complemented in X if
- $Y \subseteq X$
- $T: X \rightarrow Y$ such that $\|T y-y\| \leq \varepsilon\|y\| \forall y \in Y$.

Joanna Garbulińska Jan Kochanowski University in Kielce/Jagiellonian University in Kraków, Poland Isometric uniqueness of a complementably universal Banach space for Schauder decomposition.

- Let X, Y be Banach spaces, $\varepsilon>0 . f: X \rightarrow Y$ is an ε-isometry if

$$
(1+\varepsilon)^{-1} \cdot\|x\| \leq\|f(x)\| \leq(1+\varepsilon) \cdot\|x\|
$$

$\forall x \in X$.

- An isometry $f: X \rightarrow Y$ that is an ε-isometry for every $\varepsilon>0$, i.e. $\|f(x)\|=\|x\| \forall x \in X$.
- A Banach space Y is ε-complemented in X if

- Let X, Y be Banach spaces, $\varepsilon>0 . f: X \rightarrow Y$ is an ε-isometry if

$$
(1+\varepsilon)^{-1} \cdot\|x\| \leq\|f(x)\| \leq(1+\varepsilon) \cdot\|x\|
$$

$\forall x \in X$.

- An isometry $f: X \rightarrow Y$ that is an ε-isometry for every $\varepsilon>0$, i.e. $\|f(x)\|=\|x\| \forall x \in X$.
- A Banach space Y is ε-complemented in X if
- Let X, Y be Banach spaces, $\varepsilon>0 . f: X \rightarrow Y$ is an ε-isometry if

$$
(1+\varepsilon)^{-1} \cdot\|x\| \leq\|f(x)\| \leq(1+\varepsilon) \cdot\|x\|
$$

$\forall x \in X$.

- An isometry $f: X \rightarrow Y$ that is an ε-isometry for every $\varepsilon>0$, i.e. $\|f(x)\|=\|x\| \forall x \in X$.
- A Banach space Y is ε-complemented in X if
- $Y \subseteq X$
- $T: X \rightarrow Y$ such that $\|T y-y\| \leq \varepsilon\|y\| \forall y \in Y$.

Definition

- Y is $(<\varepsilon)$-complemented in X if it is ε^{\prime}-complemented for some $0<\varepsilon^{\prime}<\varepsilon$.
- E is complementably universal for a class of spaces if every space from the class is isomorphic to a complemented subspace of E.
- "0-complemented" means "complemented".
- f is a $(<\varepsilon)$-embedding if it is an ε^{\prime}-isometric embedding for some $0<\varepsilon^{\prime}<\varepsilon$.
- Y is $(<\varepsilon)$-complemented in X if it is ε^{\prime}-complemented for some $0<\varepsilon^{\prime}<\varepsilon$.
- E is complementably universal for a class of spaces if every space from the class is isomorphic to a complemented subspace of E.
- "0-complemented" means "complemented".
- f is a $(<\varepsilon)$-embedding if it is an ε^{\prime}-isometric embedding for some $0<\varepsilon^{\prime}<\varepsilon$.
- Y is $(<\varepsilon)$-complemented in X if it is ε^{\prime}-complemented for some $0<\varepsilon^{\prime}<\varepsilon$.
- E is complementably universal for a class of spaces if every space from the class is isomorphic to a complemented subspace of E.
- "0-complemented" means "complemented".
- f is a $(<\varepsilon)$-embedding if it is an ε^{\prime}-isometric embedding for some $0<\varepsilon^{\prime}<\varepsilon$.
- Y is $(<\varepsilon)$-complemented in X if it is ε^{\prime}-complemented for some $0<\varepsilon^{\prime}<\varepsilon$.
- E is complementably universal for a class of spaces if every space from the class is isomorphic to a complemented subspace of E.
- "0-complemented" means "complemented".
- f is a $(<\varepsilon)$-embedding if it is an ε^{\prime}-isometric embedding for some $0<\varepsilon^{\prime}<\varepsilon$.
- Y is $(<\varepsilon)$-complemented in X if it is ε^{\prime}-complemented for some $0<\varepsilon^{\prime}<\varepsilon$.
- E is complementably universal for a class of spaces if every space from the class is isomorphic to a complemented subspace of E.

Definition
Category theory

Let X be a Banach space.

- A Schauder decomposition, (finite-dimensional decomposition) is a sequence $P_{n}: X \rightarrow X$ of finite rank pairwise orthogonal linear operators such that $x=\sum_{n-n}^{\infty} P_{n} x$ for every $x \in X$. Given such a decomposition, let $Q_{n}=P_{0}+\cdots+P_{n-1}$. Then Q_{n} is a finite-rank projection Q_{n}

We shall say that X has $k-F D D$, if $k \geq \sup _{n \in \omega}\left\|Q_{n}\right\|$. We consider 1-FDD only (called monotone FDD or monotone Schauder decomposition). Every Schauder decomposition is determined by finite-rank projections Q_{n} such that $Q_{n} Q_{m}=Q_{\min (n, m)}$ and $x=\lim _{n \rightarrow \infty} Q_{n} x$ for $x \in X$.

Let X be a Banach space.

- A Schauder decomposition, (finite-dimensional decomposition) is a sequence $P_{n}: X \rightarrow X$ of finite rank pairwise orthogonal linear operators such that $x=\sum_{n=0}^{\infty} P_{n} x$ for every $x \in X$. Given such a decomposition, let $Q_{n}=P_{0}+\cdots+P_{n-1}$. Then Q_{n} is a finite-rank projection $Q_{n}: X \rightarrow X$.

Let X be a Banach space.

- A Schauder decomposition, (finite-dimensional decomposition) is a sequence $P_{n}: X \rightarrow X$ of finite rank pairwise orthogonal linear operators such that $x=\sum_{n=0}^{\infty} P_{n} x$ for every $x \in X$. Given such a decomposition, let $Q_{n}=P_{0}+\cdots+P_{n-1}$. Then Q_{n} is a finite-rank projection $Q_{n}: X \rightarrow X$.

We shall say that X has $k-F D D$, if $k \geq \sup _{n \in \omega}\left\|Q_{n}\right\|$. We consider 1-FDD only (called monotone FDD or monotone Schauder decomposition). Every Schauder decomposition is determined by finite-rank projections Q_{n} such that $Q_{n} Q_{m}=Q_{\min (n, m)}$ and $x=\lim _{n \rightarrow \infty} Q_{n} x$ for $x \in X$.
Fix $\varepsilon>0$ and fix a surjective linear operator $f: X \rightarrow Y$ such that
$(1+\varepsilon)^{-1}\|x\| \leq\|f(x)\| \leq\|x\|$
for $x \in X$. Consider the following category $\mathfrak{K}_{f}^{\varepsilon}$. The objects:
$i: X \rightarrow Z, j: Y \rightarrow Z$ such that

- $\|;\| \leq 1$ and $\|;\| \leq 1$.
- $\|i(x)-j(f(x))\| \leq \varepsilon\|x\|$ for $x \in X$.

Fix $\varepsilon>0$ and fix a surjective linear operator $f: X \rightarrow Y$ such that

$$
(1+\varepsilon)^{-1}\|x\| \leq\|f(x)\| \leq\|x\|
$$

for $x \in X$. Consider the following category $\mathfrak{K}_{f}^{\varepsilon}$. The objects: $i: X \rightarrow Z, j: Y \rightarrow Z$ such that

Fix $\varepsilon>0$ and fix a surjective linear operator $f: X \rightarrow Y$ such that

$$
(1+\varepsilon)^{-1}\|x\| \leq\|f(x)\| \leq\|x\|
$$

for $x \in X$. Consider the following category $\mathfrak{K}_{f}^{\varepsilon}$. The objects:
$i: X \rightarrow Z, j: Y \rightarrow Z$ such that

- $\|i\| \leq 1$ and $\|j\| \leq 1$;

Fix $\varepsilon>0$ and fix a surjective linear operator $f: X \rightarrow Y$ such that

$$
(1+\varepsilon)^{-1}\|x\| \leq\|f(x)\| \leq\|x\|
$$

for $x \in X$. Consider the following category $\mathfrak{K}_{f}^{\varepsilon}$. The objects:
$i: X \rightarrow Z, j: Y \rightarrow Z$ such that

- $\|i\| \leq 1$ and $\|j\| \leq 1$;
- $\|i(x)-j(f(x))\| \leq \varepsilon\|x\|$ for $x \in X$.

An arrow.

An arrow.

An arrow.

An initial object.

Lemma1

The category $\mathfrak{K}_{f}^{\varepsilon}$ has an initial object (i_{0}, j_{0}) such that both i_{0}, j_{0} are canonical isometric embeddings into $X \oplus Y$ with a suitable norm $\|\cdot\|$ and there exist projections $P: X \oplus Y \rightarrow X$ and $Q: X \oplus Y \rightarrow Y(\|P\| \leq 1$ and $\|Q\| \leq 1)$.

Lemma1

The category $\mathfrak{K}_{f}^{\varepsilon}$ has an initial object $\left(i_{0}, j_{0}\right)$ such that both i_{0}, j_{0} are canonical isometric embeddings into $X \oplus Y$ with a suitable norm $\|\cdot\|$ and there exist projections $P: X \oplus Y \rightarrow X$ and $Q: X \oplus Y \rightarrow Y(\|P\| \leq 1$ and $\|Q\| \leq 1)$.

Lemma1

The category $\mathfrak{K}_{f}^{\varepsilon}$ has an initial object $\left(i_{0}, j_{0}\right)$ such that both i_{0}, j_{0} are canonical isometric embeddings into $X \oplus Y$ with a suitable norm $\|\cdot\|$ and there exist projections $P: X \oplus Y \rightarrow X$ and $Q: X \oplus Y \rightarrow Y(\|P\| \leq 1$ and $\|Q\| \leq 1)$.

Initial object

1) Define

$$
G=\left\{(x,-f(x)) \in X \times Y: x \in \varepsilon^{-1} B_{X}\right\} .
$$

2) Let K be the convex hull of $\left(B_{X} \times\{0\}\right) \cup\left(\{0\} \times B_{Y}\right) \cup G$

We will show that the norm
$\|(x, y)\|_{K}=\inf \left\{\left\|x_{0}\right\| x+\left\|y_{1}\right\|_{Y}+\varepsilon\left\|x_{2}\right\| x:(x, y)=\right.$
$\left.\left(x_{0}, 0\right)+\left(0, y_{1}\right)+\left(x_{2},-f\left(x_{2}\right)\right),(x, y) \in K\right\}$, is as required.
Define $i_{0}(x)=(x, 0), j_{0}(y)=(0, y)$.

- Firstly we show that $(i, j 0)$ is an object of $\tilde{\Omega}_{f}^{c}$:
- $\left\|i_{0}\right\|_{K} \leq 1$ and $\left\|j_{0}\right\|_{K} \leq 1 ;$
- $\left\|i_{0}(x)-j_{0}(f(x))\right\|_{K} \leq \varepsilon\|x\|$ for $x \in X$;
- We prove that i_{0} and j_{0} are isometric embeddings.

Next step is to show that $\left(i_{0}, j_{0}\right)$ is an initial object of $\mathfrak{K}_{f}^{\varepsilon}$.

- Given an object (i, j) of $\mathfrak{K}_{f}^{\varepsilon}$, define

$$
T(x, y)=i(x)+j(y)
$$

- We show that $\|T\|_{K} \leq 1$.

Initial object

1) Define

$$
G=\left\{(x,-f(x)) \in X \times Y: x \in \varepsilon^{-1} B_{X}\right\} .
$$

2) Let K be the convex hull of $\left(B_{X} \times\{0\}\right) \cup\left(\{0\} \times B_{Y}\right) \cup G$

We will show that the norm
$\|(x, y)\|_{K}=\inf \left\{\left\|x_{0}\right\| x+\left\|y_{1}\right\|_{Y}+\varepsilon\left\|x_{2}\right\| x:(x, y)=\right.$
$\left.\left(x_{0}, 0\right)+\left(0, y_{1}\right)+\left(x_{2},-f\left(x_{2}\right)\right),(x, y) \in K\right\}$, is as required.
Define $i_{0}(x)=(x, 0), j_{0}(y)=(0, y)$.

- Firstly we show that $\left(i_{0}, j_{0}\right)$ is an object of \Re_{f}^{ε} :
- $\left\|i_{0}\right\| k \leq 1$ and $\left\|j_{0}\right\| k \leq 1$;
- We prove that i_{0} and j_{0} are isometric embeddings.

Next step is to show that $\left(i_{0}, j_{0}\right)$ is an initial object of $\mathfrak{K}_{f}^{\varepsilon}$.

- Given an object (i, j) of $\mathfrak{K}_{f}^{\varepsilon}$, define

$$
T(x, y)=i(x)+j(y) .
$$

- We show that $\|T\|_{K} \leq 1$.

Initial object

1) Define

$$
G=\left\{(x,-f(x)) \in X \times Y: x \in \varepsilon^{-1} B_{X}\right\} .
$$

2) Let K be the convex hull of $\left(B_{X} \times\{0\}\right) \cup\left(\{0\} \times B_{Y}\right) \cup G$.

We will show that the norm

- Firstly we show that $\left(i_{0}, j_{0}\right)$ is an object of $\mathfrak{K}_{f}^{\varepsilon}$:

- We prove that i_{0} and j_{0} are isometric embeddings.

Next step is to show that $\left(i_{0}, j_{0}\right)$ is an initial object of $\mathfrak{K}_{f}^{\varepsilon}$.

- Given an object (i, j) of $\mathfrak{K}_{f}^{\varepsilon}$, define

- We show that $\|T\|_{K} \leq 1$.

Initial object

1) Define

$$
G=\left\{(x,-f(x)) \in X \times Y: x \in \varepsilon^{-1} B_{X}\right\} .
$$

2) Let K be the convex hull of $\left(B_{X} \times\{0\}\right) \cup\left(\{0\} \times B_{Y}\right) \cup G$.

We will show that the norm

$$
\begin{aligned}
& \|(x, y)\|_{K}=\inf \left\{\left\|x_{0}\right\|_{X}+\left\|y_{1}\right\|_{Y}+\varepsilon\left\|x_{2}\right\|_{X}:(x, y)=\right. \\
& \left.\left(x_{0}, 0\right)+\left(0, y_{1}\right)+\left(x_{2},-f\left(x_{2}\right)\right),(x, y) \in K\right\}, \text { is as required. }
\end{aligned}
$$

- We prove that i_{0} and j_{0} are isometric embeddings.

Next step is to show that $\left(i_{0}, j_{0}\right)$ is an initial object of $\mathfrak{K}_{f}^{\varepsilon}$. - Given an object (i, j) of $\mathfrak{K}_{f}^{\varepsilon}$, define

- We show that $\|T\|_{K} \leq 1$.

Initial object

1) Define

$$
G=\left\{(x,-f(x)) \in X \times Y: x \in \varepsilon^{-1} B_{X}\right\} .
$$

2) Let K be the convex hull of $\left(B_{X} \times\{0\}\right) \cup\left(\{0\} \times B_{Y}\right) \cup G$.

We will show that the norm

$$
\begin{aligned}
& \|(x, y)\|_{K}=\inf \left\{\left\|x_{0}\right\|_{X}+\left\|y_{1}\right\|_{Y}+\varepsilon\left\|x_{2}\right\|_{X}:(x, y)=\right. \\
& \left.\left(x_{0}, 0\right)+\left(0, y_{1}\right)+\left(x_{2},-f\left(x_{2}\right)\right),(x, y) \in K\right\}, \text { is as required. }
\end{aligned}
$$

$$
\text { Define } i_{0}(x)=(x, 0), j_{0}(y)=(0, y)
$$

- Firstly we show that $\left(i_{0}, j_{0}\right)$ is an object of $\mathfrak{K}_{f}^{\varepsilon}$:
- $\left\|i_{0}\right\|_{K} \leq 1$ and $\left\|j_{0}\right\|_{K} \leq 1$;
- $\left\|i_{0}(x)-j_{0}(f(x))\right\|_{K} \leq \varepsilon\|x\|$ for $x \in X$;
- We prove that i_{0} and j_{0} are isometric embeddings.

Next step is to show that $\left(i_{0}, j_{0}\right)$ is an initial object of \Re_{f}^{ε}.

- Given an object (i, j) of $\mathfrak{K}_{f}^{\varepsilon}$, define
- We show that ||T\|

1) Define

$$
G=\left\{(x,-f(x)) \in X \times Y: x \in \varepsilon^{-1} B_{X}\right\}
$$

2) Let K be the convex hull of $\left(B_{X} \times\{0\}\right) \cup\left(\{0\} \times B_{Y}\right) \cup G$.

We will show that the norm
$\|(x, y)\|_{K}=\inf \left\{\left\|x_{0}\right\|_{X}+\left\|y_{1}\right\|_{Y}+\varepsilon\left\|x_{2}\right\|_{X}:(x, y)=\right.$
$\left.\left(x_{0}, 0\right)+\left(0, y_{1}\right)+\left(x_{2},-f\left(x_{2}\right)\right),(x, y) \in K\right\}$, is as required.
Define $i_{0}(x)=(x, 0), j_{0}(y)=(0, y)$.

- Firstly we show that $\left(i_{0}, j_{0}\right)$ is an object of $\mathfrak{K}_{f}^{\varepsilon}$:
- $\left\|i_{0}\right\|_{K} \leq 1$ and $\left\|j_{0}\right\|_{K} \leq 1$;
- $\left\|i_{0}(x)-j_{0}(f(x))\right\|_{K} \leq \varepsilon\|x\|$ for $x \in X$;
- We prove that i_{0} and j_{0} are isometric embeddings.

Next step is to show that $\left(i_{0}, j_{0}\right)$ is an initial object of $\mathfrak{K}_{f}^{\varepsilon}$.

- Given an object (i, j) of $\mathfrak{K}_{f}^{\varepsilon}$, define

$$
T(x, y)=i(x)+j(y)
$$

- We show that $\|T\|_{K} \leq 1$.

3) Define linear operators $P: X \oplus Y \rightarrow X$ and $Q: X \oplus Y \rightarrow Y$ as:
 - $P(x, y)-x+(1+\varepsilon)^{-1} f^{-1}(y)$
 - $Q(x, y)=f(x)+y$
 4) We check that $\|P\|_{X} \leq 1$ and $\|Q\|_{Y} \leq 1$, so these operators are
 projections.

3) Define linear operators $P: X \oplus Y \rightarrow X$ and $Q: X \oplus Y \rightarrow Y$ as:

- $P(x, y)=x+(1+\varepsilon)^{-1} f^{-1}(y)$
- $Q(x, y)=f(x)+y$

4) We check that $\|P\|_{X} \leq 1$ and $\|Q\|_{Y} \leq 1$, so these operators are projections.
5) Define linear operators $P: X \oplus Y \rightarrow X$ and $Q: X \oplus Y \rightarrow Y$ as:

- $P(x, y)=x+(1+\varepsilon)^{-1} f^{-1}(y)$
- $Q(x, y)=f(x)+y$

4) We check that $\|P\|_{X} \leq 1$ and $\|Q\|_{Y} \leq 1$, so these operators are projections.

Let \mathfrak{K} be a category. A Fraïssé sequence in \mathfrak{K} is an inductive sequence \vec{U} satisfying the following conditions:
(U) For every $A \in \mathfrak{K}$ there exists $n \in \mathbb{N}$ such that $\mathfrak{K}\left(A, U_{n}\right) \neq \emptyset$;

$$
U_{0} \longrightarrow \ldots \longrightarrow U_{n} \longrightarrow \ldots
$$

A

Let \mathfrak{K} be a category. A Fraïssé sequence in \mathfrak{K} is an inductive sequence \vec{U} satisfying the following conditions:
(U) For every $A \in \mathfrak{K}$ there exists $n \in \mathbb{N}$ such that $\mathfrak{K}\left(A, U_{n}\right) \neq \emptyset$;

(A) For every $n \in \mathbb{N}$ and for every morphism $f \in \mathfrak{K}\left(U_{n}, B\right)$, where $B \in \mathfrak{K}$, there exist $m \in \mathbb{N}, m>n$ and $g \in \mathfrak{K}\left(B, U_{m}\right)$ such that $u_{n}^{m}=g \circ f$.

(A) For every $n \in \mathbb{N}$ and for every morphism $f \in \mathfrak{K}\left(U_{n}, B\right)$, where $B \in \mathfrak{K}$, there exist $m \in \mathbb{N}, m>n$ and $g \in \mathfrak{K}\left(B, U_{m}\right)$ such that $u_{n}^{m}=g \circ f$.

We now define the relevant category \mathfrak{K}. The objects of \mathfrak{K} are rational finite-dimensional Banach spaces.

$$
\begin{array}{lllll}
X_{0} & X_{1} & \ldots & X_{n} & \ldots
\end{array}
$$

Given rational finite-dimensional spaces E, F, an \mathfrak{K}-arrow is a pair (e, P) of rational linear operators $e: E \rightarrow F, P: F \rightarrow E$ such that:
(P1) e is a rational isometric embedding.
(P2) $P \circ e=\operatorname{id}_{E}$ and $\|P\| \leq 1$, where E is the domain of e.
Now we use the fact that every countable category with amalgamations has a Fraïssé sequence.

We now define the relevant category \mathfrak{K}. The objects of \mathfrak{K} are rational finite-dimensional Banach spaces.

$$
X_{0} \underset{P_{0}^{1}}{\stackrel{e_{0}^{1}}{\overleftrightarrow{ }}} X_{1} \underset{P_{1}^{2}}{\stackrel{e_{1}^{2}}{\overleftrightarrow{ }}} \ldots \underset{P_{n-1}^{n}}{\stackrel{e_{n-1}^{n}}{\leftrightarrows}} X_{n} \xrightarrow[P_{n}^{n+1}]{\stackrel{e_{n}^{n+1}}{\leftrightarrows}} \ldots
$$

Given rational finite-dimensional spaces E, F, an \mathfrak{K}-arrow is a pair (e, P) of rational linear operators $e: E \rightarrow F, P: F \rightarrow E$ such that:
(P1) e is a rational isometric embedding.
(P2) $P \circ e=\operatorname{id}_{E}$ and $\|P\| \leq 1$, where E is the domain of e.
Now we use the fact that every countable category with amalgamations has a Fraïssé sequence.

Let us consider the following extension property of a Banach space X :
(E) Given a pair $E \subseteq F$ of finite-dimensional Banach spaces such that E is complemented in F, given an isometric embedding $i: E \rightarrow X$ such that $i[E]$ is complemented in X, for every $\varepsilon>0$ there exists an ε-isometric embedding $g: F \rightarrow X$ such that $\|g \upharpoonright E-i\|<\varepsilon$ and $g[F]$ is ε-complemented in X.

Theorem (Uniqueness)

Let \mathbb{P} and \mathbb{K} be Banach spaces satisfying condition (E) and let $h: A \rightarrow B$ be a bijective linear isometry between complemented finite-dimensional subspaces of \mathbb{P} and \mathbb{K}, respectively. Then for every $\varepsilon>0$ there exists a bijective linear isometry $H: \mathbb{P} \rightarrow \mathbb{K}$ that is ε-close to h. In particular, \mathbb{P} and \mathbb{K} are linearly isometric.

Theorem (Uniqueness)

Let \mathbb{P} and \mathbb{K} be Banach spaces satisfying condition (E) and let $h: A \rightarrow B$ be a bijective linear isometry between complemented finite-dimensional subspaces of \mathbb{P} and \mathbb{K}, respectively. Then for every $\varepsilon>0$ there exists a bijective linear isometry $H: \mathbb{P} \rightarrow \mathbb{K}$ that is ε-close to h. In particular, \mathbb{P} and \mathbb{K} are linearly isometric.

Theorem (Universality)

Let X be a Banach space with a monotone FDD. Then there exists an isometric embedding $e: X \rightarrow \mathbb{P}$ such that $e[X]$ is 1 -complemented in \mathbb{P}.

嗇 J. Garbulińska, Isometric uniqueness of a complementably universal Banach space for Schauder decompositions,

